LELon
KEcogl
2
ed
SP@.

aide
tical qui
&
- a pra

In Ehis lecture:

eOverview of the course
o Gitting started
oSpeech feature extraction

Overview O"f
Fhe course

Known
- Unknowns

Unknowns

Structure of this
lecture series

@ A series of 45-minute lectures
@ Each one will combine:
@ Some of the theory of speech recognition
@ Practical examples with the Kaldi toolkit
@ Note: various toolkits exist.

speech recog i
® I believe Kaldi is the best one... but 1 S

wrote much of it.

@ Note: this was released 1 year ago.

Prerequisites

@ It will be helpful if you have encountered:
@ Statistical models
@ UNIX shell scripts
@ C++

@ If a section requires background knowledge
of some kind, we will suggest search terms.

o e.g. |

What this course is about

Machine

Natural Language Learning

Processing

Signal Processing |

--—'-—""'—-.-1)

e =

— What this course is about

\ Speech Processing

/(Speech signal\

What is Speech Recognition?

She asked for ..

How we do it

@ Given "training data” from the target
language, we'll train a statistical model of

Speech. statistical model |

@ This model will assign probabilities to (some
sentence) producing (some waveform)

® Given a waveform, we can work out the
most likely sentence.

@ This wont be guaranteed accurate.

Data resources required

@ A labeled corpus

@ i.e. a collection of recordings of speech

@ a record of what was spoken for each one
@ A pronouncing dictionary, a.k.a. “lexicon”

@ Says, for each word, what the sequence of
"phonemes” (speech sounds) is.

@ Not necessary in phonetically written languages

@ Possibly some extra text to train “language model”

Finding speech data

@ A lot of speech resources are available from
the Linguistic Data Consortium (LDC)

@ Also Appen, ELRA

@ None of this is for free. Typically one to
several thousand dollars for LDC databases

@ Not a download. Its FedEx.
@ Some lexicons available for free (e.g. CMUDict)

@ A limited amount of free speech data is

available. gufenberg audio| |

Other Resources

@ To do large-scale speech training (on hundreds of
hours of data), would also need:

@ A cluster of machines (at least 20 or so cores in
total, preferably more), running e.qg. GridEngine

@ A few hundred gigabytes of space on a fast disk
(e.g. NFS mounted)

® Fast local network

What you will be able fo do

@ If you listen to and understand this lecture
series, you should be able to:

@ build and (somewhat) understand a command-
line speech recognition system

@ You will not be able to:
@ build a dialog system or speech user interface

@ get perfect accuracy (50-95% is normal
range, except for yes/no/digit type dialogs)

How to follow these lectures

@ I will be describing how to run the Kaldi
software

® Better to watch or attend the lecture without
taking notes

® Slides and video will be made available (follow
links from kaldi.sf.net)

@ For running the examples, do it after the
lecture (get the commands from the slides)

Gretting started

What you need

@ Some kind of UNIX-based system (Linux, Mac,
cygwin should all work).

@ Plenty of memory (e.g. 5G), disk space (e.g.
20G).

@ Fast Web connection, or LDC data on your
system.

@ You may need fo install some packages
@ e.qg. subversion (svn), wget, g++

@ System-dependent: figure it out yourself or
ask your sysadmin.

Insfalling Kaldi

4000 e 1 i A e AR R DR ¢ i
| $ ## see instructions at http . //kaldi. sf net |
| S ## first cd to somewhere with a lot of space.
| $ svn co https://kaldi.svn.sourceforge.net/svnroot/kaldi/trunk kaldi-trunk |
| $ cd kaldi-trunk/tools |
$./install.sh ## Installs some stuff Kaldi depends on... takes a while
S cd & +/snB |
$./configure }
$ make -j 8 ## -j 8 makes with 8 jobs in parallel; should not
$ ## exceed number of cores on your machine.]

@ If that worked, congratulations.
@ Otherwise, fry to figure out what went wrong.

@ Look carefully at the output of steps that
failed.

How to get help

@ If any step in this course doesnt run..

® Check for obvious stuff like programs that
are invoked but not installed.

@ Ask at kaldi-developers@lists.sourceforge.net

@ Please, no non-Kaldi questions, e.g. how do I
change directories, how do I install awk.

@ If you fix something, contact us.

What we installed (1)

— —— e e e —— —

oo TR f
i $ cd ~/kaldi-trunk # assuming it was in your homedir
| $ 1s

. COPYING INSTALL README.txt egs misc src tools windows

$ # Note: “tools/"”, “src/" and “egs/” are most important.

$ 1ls tools/

ATLAS interpolatedwrite-5.60.02.patch openfst.patch

CLAPACK include irstlm INSTALL atlas3.8.3.tar.gz
sctk-2.4.0 openfst sctk-2.4.0-20091110-0958.tar.bz2
install.sh openfst-1.2.10 sph2pipe v2.5

install atlas.sh openfst-1.2.10.tar.gz sph2pipe v2.5.tar.gz

[

L

— = S E— e __ - __ _ — . R e —

@ Various tools Kaldi depends on.
@ OpenFst: Weighted Finite State Transducer library

@ ATLAS/CLAPACK: standard linear algebra libraries

@ “scoring”, audio format conversion tools....

thnL we ms’ralled (2)

|00 Gl T S R f S|

| $ cd /kaldl trunk # assumlng 1t was 1n your homedlr

. $ cd src |

iSRS |
Doxyfile configure fstext et nnet cpu tied

| INSTALL decoder gmm latbin nnetbin tiedbin 4
Makefile doc gmmbin 1lm nnetbin cpu transform |
NOTES feat hmm machine-type optimization tree }
TODO featbin et makefiles rnn it L |
base fgmmbin kaldi.mk matrix Sgmm]
bin fstbin kaldi.mk.bak nnet sgmmbin |

@ Mostly directories containing code.
@ Those ending in bin/ contain Kaldi programs

@ There are a large number of programs, each
with a fairly simple function.

Runnlng the examples

RS — —

1 $ cd /kaldl trunk # assumlng 1t was in your homedlr SE
| $ cd egs

| (Saglis {
| README.txt gp rm swbd timit ws] |
| $ ¢d rm |
S 1s ‘
README.txt sl s2 s3 s4

S cd s3 # The s3 example scripts are the most normal one. 1
SiHES |
RESULTS conf data exp 1local path.sh run.sh scripts steps]

L — = = — = = e — - —— = - e

® There are example scripts for various data-sets.
@ We'll use Resource Management (smallest one).

@ Very easy task: clean, planned speech, small
vocabulary. (Spoken commands to computer).

Finding the data

‘ $ cd /kaldl trunk/egs/rm

| $ cat README.txt '
| About the Resource Management corpus:

| Clean speech in a medium-vocabulary task consisting |
of commands to a (presumably imaginary) computer system. About 3 |
hours of training data. |
Available from the LDC as catalog number LDC93S3A (it may be 1

y(§C?C>

possible to get the same data using combinations of other catalog
numbers, but this is the one we used).

g L 3 i h: il [aafl . . il - — S— _|
— — — — — _ __ __ — ____ _ [— I —— _

@ See if you have this data on your system
o Its $1000 from LDC if non-member.
@ Look for directory containing subdirs:

rml_audiol rml_audio2 rm2__audio

If you dont have the data

@ If your institution is not an LDC member and
doesnt want to pay for the data:

@ you can use the scripts in rm/s4

® Uses precomputed features derived from a
subset of the RM data

® Will be downloaded from the Internet.

Thanks to Vassil Panayotov for contributing this recipe.

Looking at the data

R _ E— B e ___ . [—— I — =

<C?C3C3 1k

$ find /export/corporaS/LDC/LDC93S3A/rm comp | head |
~ /export/corpora5/LDC/LDC93S3A/rm _comp
/export/corpora5/LDC/LDC93S3A/rm comp/rm2 audio
| /export/corpora5/LDC/LDC93S3A/rm comp/rm2 audio/3-2.2
/export/corpora5/LDC/LDC93S3A/rm comp/rm2 audio/3-2.2/rm2 |
/export/corpora5/LDC/LDC93S3A/rm comp/rm2 audio/3-2.2/rm2/ex train
/export/corpora5/LDC/LDC93S3A/rm comp/rm2 audio/3-2.2/rm2/ex_train/lpn0_ 7
/export/corpora5/LDC/LDC93S3A/rm comp/rm2 audio/3-2.2/rm2/ex train/lpn0 7/tcll25.wav |
/export/corpora5/LDC/LDC93S3A/rm_comp/rm2_audio/3-2.2/rm2/ex_train/lpn0_7/tc0966.wav |
$ less /export/corpora5/LDC/LDC93S3A/rm comp/rml audiol/rml/doc/al sents.txt
; al sents.txt - updated 09/20/89
<snip> |
What is the constellation's gross displacement in long tons? (SR001)
Is Ranger's earliest CASREP rated worse than hers? (SR002) }

Show me all alerts. (SR003)

Give Bainbridge's CASREPs from the last 7 months. (SR004) |
Show the Enterprise's home port. (SR005)]
Draw Texas's last 3 H.F.D.F. sensor posits. (SR006) |

5 8 =5 LEt e

B - = S e — — — I - _ ___ N —

@ Note: .wav files are no’r really .way, fhey are sph

@ Use fools/sph2pipe_v2.5/sph2pipe to convert
| sphere rma’r| ' |

The word-pair grammar

©C00 e, S :
| $ less /export/corpora5/LDC/LDC93S3A/rm comp/rml audiol/rml/doc/wp gram.txt
5 1
f‘ EE I b b b b b S S S b S S i S i S S i b i S S i S S S S b S S i S S S S S S S S S S b S S i i S b S S S b b b S S b b S b b b b b b b b S b b b b S
I
i COPYRIGHT 1987. BBN LABORATORIES, INCORPORATED
TR
* ALL RIGHTS RESERVED |

ER R b b b S b b b b i b i b b b b b i b b i b b b b i b i i b i S i I S b i i b i e S b b b e i Sl e b 3 \‘

* File: patts snor word pair.text |

This file contains a specification for the 'word-pair' grammar developed |
at BBN. |
The grammar allows all two word sequences (bigrams) possible in the DARPA ;
continuous speech resource management database as defined by the sentence \
pattern grammar.]

b AL, TR e, JEC L

== — - — Ll

= —— = = - - == — _ _ __ _ — _ S _____—

@ The RM database comes with a “word-pair grammar”

@ For the other Kaldi examples, we use statistical

language models.

Bayes' rule and ASR

P(GUdIO) p() = likelihoosi

li_)() b= probabi\\’ry

@ Here, S is the sequence of words, P(S) is language
model, e.g. n-gram model or probabilistic grammar.

@ p(audio | S) is a sentence-dependent statistical model
of audio production, trained from data.

@ Given a fest utterance, we pick S to maximize
P(S | audio). I.e. the most likely sentence.

@ Note: p(audio) is a normalizer that doesnt matter.

Preparmg fhe dafa

ooé f-_,,_

| ‘SiEcd ~/kald1 trunk/egs/rm/s3 |
.\ $ ## we're running the steps from run.sh ## ‘

¢ $ local/rm data prep.sh /export/corpora5/LDC/LDC93S3A/rm comp |
$ local/rm format data.sh

|
| S ks data 1

lang lang test 1local test feb89 test feb91 test mar87 test oct87 T
test oct89 test sep92 train

S

@ Putting data in form that Kaldi scripts understand.

@ data/lang contains language-specific stuff (also see
data/lang_test which contains the grammar too).

@ data/train contains training data (data/test_feb89
etc. have same format)

Language speaﬁc stuff

-y 3

FEES head) data/lang/phones txt

| <eps> 0

. ai

ae 2 |
| ah 3

ao 4 |
aw 5 |
$ head -2 data/lang/words.txt

head -4 data/lang/words.txt

| <eps> 0 i
Al

A42128 2 !

AAW 3

$ cat data/lang/silphones.csl
48
S ## Note: just one silence phone in this setup. |

— = - - — == = — = - — —— - E— — . —

@ *.txt are symbol tables in OpenFst format

@ Map between strings and ints; Kaldi code uses infts.

The lexicon

000 , o) , s S s
EES fstprlnt ——1symbols data/lang/phones txt ——osymbols data/lang/words txt
' data/lang/L.fst | head
0 1 <eps> <eps> 0.693147182
| 0.1 Ssiaak <eps> 0.693147182
l 1 1 ax A v 0..695d 182
1 2 ax A 0.695R<EED
1 3 ey A42128
1 15 ey AAW
1 21 ae ABERDEEN
1 26 ax ABOARD
1 30 ax ABOVE
L e , S it 3, TR P RDS eI | R G

@ The lexicon (pronouncing dictionary) is in binary
OpenFst format

@ Can view it as ftext using the command above.

Weighted Finite State Transducers (WFSTS)

@ Various resources for learning WFSTs, OpenFst

@ Informal intro by me to WFSTs (read slides first)

@ http://old-site.clsp.jhu.edu/news-events/abstract.php?sid=20110902

® More formal one, search for hbka.pdf| |

@ Paul Dixon tutorial: ———
apsipa_09_tutorial_dixon_furui.pdf| |

@ For OpenfFst resources/tutorial: www.openfst.org

@ Next slides: very quick infro.

WFST quick intro: FSAs

@ Finite State acceptor (FSA) is a finite representation
of a possibly infinite set of strings.

@ Has a finite #states. One is "initial state”.
States can be labeled “final”.

@ Arcs between states have symbols on them (or
special symbol epsilon meaning no symbol)

@ String == symbol-sequence.

@ String accepted if theres a path with that
symbol-sequence on, from initial->final state.

WFST quick intro: WFSAs

® WFSA is like FSA but adding costs fo the
transitions and final-states.

@ String "accepted” with weight determined by
minumum-cost path from initial->final.

@ The notion of cost can be generalized.

@ We call them “weights”. Operations + and ¥,
satisfying axioms of a “semiring”

@ A weight is "multiplied” along paths, "added”
across paths.

WEFST quick intro: FSTs

@ Finite State transducer (FST) is (from the point of
view of its name) is an object that
"transduces” (converts) one string into another.

@ Like FSA but two symbols on each arc: “input” and
“output”.

® Mathematically, represents a set of pairs of
strings: (input-string, output-string).

@ "transducer” name is a bit misleading.

@ Notion of “composition” (like function composition)

WFST quick intro: WFSTSs

@ WFST combines the two-symbol idea of FSTs,
with the weighting idea of FSAs.

@ Keywords:
@ Determinization, minimization, composition
@ equivalent, epsilon-free, functional
@ on-demand algorithm
@ weight-pushing, epsilon removal

@ You might want to find out what these mean.

Data directory format

R — _ e s e

| $ 1ls data/train ## note: it would look like this after the next step. T |
| spk2gender spk2utt text utt2spk wav.scp

' $ head -2 data/train/wav.scp |
trn adg04 sr009 sph2pipe -f wav /foo/rml audiol/rml/ind trn/adg0 4/sr009.sph |
| trn adg04 sr049 sph2pipe -f wav /foo/rml audiol/rml/ind trn/adg0 4/sr049.sph |
S head -2 data/train/text

trn adg04 sr009 SHOW THE GRIDLEY+S TRACK IN BRIGHT ORANGE

trn adg04 sr049 IS DIXON+S LENGTH GREATER THAN THAT OF RANGER]

S head -2 data/train/utt2spk
trn adg04 sr009 adg0
trn adg04 sr049 adg0

; — = = - E— — — e — e — — _ ___ — _ I — I — _ —

® Most of these files map from utterance-id to
(something)

@ Kaldi "Table” concept: collection of objects indexed by
a string.

The Table concept

@ A Table is a collection of objects indexed by a string
(string must be nonempty, space-free).

@ E.g. a collection of matrices indexed by utterance-
id, representing features.

@ "Templates” in C++: e.g. vector<int> is a vector of
integers. Mechanism for generic code.

@ The basic concept is: Table<Object>, e.g. Table<int>,
Table<Matrix<float> >

@ Handles access to objects on disk (or pipes, etc.)

Tables: form on disk

@ Two ways objects are stored on disk:

@ “scp” (script) mechanism: .scp file specifies mapping
from key (the string) to filename or pipe:

— — — e —e———— e

000 R e %]
. $ head 25 data/traln/wav scp r

| trn adg04 sr009 sph2pipe -f wav /foo/rml audiol/rml/ind trn/adg0 4/sr009.sph | |

h trn adg04 sr049 sph2pipe -f wav /foo/rml audiol/rml/ind trn/adg0 4/sr049.sph |
E = i

I N

= — _ -

® ark (archlve) mechanism: data is all in one ﬁle
with utterance ids (example below is in text mode):

= — — == — — _ E— — —

<OCN§ BRI 2 R o AR A 3 SR

‘ $ head —2 data/traln/text i
[trn adg04 sr009 SHOW THE GRIDLEY+S TRACK IN BRIGHT ORANGE y

‘ trn adg04 sr049 IS DIXON+S LENGTH GREATER THAN THAT OF RANGER

u p "N

i I s e A FEE S Y. AR s o)
— — _ — — = = e ———— - —

Specitying Tables on command line

@ Strings passed from command line say how to read
or write Tables.

@ Note: the type of object expected, and whether to
read or write, is determined by the program itself.

@ A string interpreted as specifying how to write a
Table, we call a “wspecifier” in code, etc.

@ A string that specifies how to read a Table is
called an "rspecifier”.

Examples of writing Tables

wspecifier meaning

ark:foo.ark Write to archive “foo.ark”

scp:foo.scp Write to files using mapping in foo.scp
ark:- Write archive to stdout

ark,t:lgzip -c >foo.gz

Write text-form archive to foo.gz

ark,t:-

Write text-form archive to stdout

ark,scp:foo.ark,foo.scp

Write archive and scp file (see below)

@ Last one is a special case: write archive, and .scp file
specifying offsets into that archive (for efficient
random access). Here, .scp file is like an index.

Examples of reading Tables

rspecifier meaning
ark:foo.ark Read from archive foo.ark
scp:foo.scp Read as specified in foo.scp
ark:- Read archive from stdin
ark:qunzip -c foo.gz| Read archive from foo.gz
ark,s,cs:- Read archive (sorted) from stdin...

@ In last one, s’ asserts archive is sorted, "¢cs” asserts
it will be called in sorted order.

@ Allows memory-efficient random access on archive.

C++ level Table code

@ Note: there is actually no Table<Object> class.

@ There are three: SequentialTableReader,
RandomAccessTableReader, and TableWriter.

oo S SRl e |
| SequentialTableReader<Matrix<float> > matl reader(rspecifierl);
| RandomAccessTableReader<Matrix<float> > mat2_ reader(rspecifier2);
| TableWrite<Matrix<float> > mat_writer(wspecifier);
| for (; !matl reader.Done(); matl reader.Next()) {
const Matrix<float> matl(matl reader.Value());
std::string key = matl reader.Key();
1f (mat2 reader.HasKey(key)) {
Matrix<float> mat2(mat2 reader.Value());
Matrix<float> prod(matl.NumRows(), mat2.NumCols());
prod.AddMatMat (1.0, matl, kNoTrans, mat2, kNoTrans);

mat writer.Write(key, prod);

— - — — ——— e e—— E—— ———— .

Shell level Table example

@ This fake example imagines the code on the

previous slide was in a program called multiply-
matrices.

@ In reality, Kaldi programs are a little higher level

than this (although there is a program “transform-
feats” that does this as a special case).

E— — i S

“ark,t:|gzip —c >transformed feats.gz”

| s i

|

oo i]
. $ multiply-matrices “scp:feats.scp” \ |
| “ark:gunzip —c transforms.gz|” \ |
I; I

Feature processing

Speech audio processing

® The most useful information in speech is frequency
domain

@ e.g. position of peaks in amplitude called
“formants” that vary between vowels

@ We use short-time Fourier spectrum

@ Further process this to reduce dimension and
make it more Gaussian distributed.

gausswi an distribution |‘ ’ i

Audio processing (simple version)

@ Input is 16kHz sampled audio.

o Take a 25ms window (shift by 10 ms each time; we
will output a sequence of vectors, one every 10ms)

@ Multiply by windowing function e.g. Hamming
Hamming window| |
@ Do fourier transform B N |

@ Take log energy in each frequency bin

@ Do discrete cosine transform (DCT): (gives us the
"cepstrum”)

|

@ Keep the first 13 coefficients of the cepstrum.

Audio processing (details)

@ Pre-scale the frequency axis with "mel” (perceptual)

scale before doing DCT
e L |

@ Dont take DCT of individual frequency components:

average energy over triangular “bins”, equally
spaced in mel scale

@ "Pre-emphasize” signal (do s'(t) = s(t) -0.97 s(t-1)) ...
reduces aliasing artifacts w/ Hamming (?)

@ Add a little noise to signal: “dithering”--> no log(0)
@ Result is MFCC (Mel Frequency Cepstral Coeffs.)

@ Kaldi also supports "PLP” (perceptual linear
prediction)-- usually a bit better.

Audio processmg (script)

‘c>c>c>

1 ## assumes your shell is bash Uses 4 cpus (parameter 4) ;
| featdir=mfcc feats ## Note: put this somewhere with disk space
| |
for x in train test mar87 test oct87 test feb89 test oct89 \ i
test feb91l test sep92; do |
steps/make mfcc.sh data/$x exp/make mfcc/$x S$featdir 4]
#steps/make plp.sh data/$x exp/make plp/$x S$featdir 4 {
done

R— e — = — e = = E— E—_— — —

@ For training set and each of the test sets, make the
features with 4 CPUs (on local machine).

@ Puts features e.qg. in data/train/feats.scp

i ‘head data/traln/feats scp
' trn _adg04 sr009 /home/dpovey/data/kaldi rm feats/raw mfcc train.l.ark:16
“ trn adg04 sr049 /home/dpovey/data/kaldl rm feats/raw mfcc traln l.ark:23395 |

|
V

Audio processing (script)

@ Main command run by steps/make_mfcc.sh:

[T T S

‘ $ head _1 eXp/make meC /traln/make meC]_ log o 5 R S T 11
' compute-mfcc-feats --verbose=2 --config=conf/mfcc.conf \ |
| scp:exp/make mfcc/train/wavl.scp \ }

| ark,scp:/data/mfcc/raw mfcc train.l.ark,/data/mfcc/raw mfcc train.l.scp V

— - — - = S ——— R— — —

@ First argument “scp:..” tells it to find filenames
(actually commands) in [dir]/wavl.scp

@ Second argument “ark,scp:...” tells it to write an
archive, and an index info the archive.

@ Archive contains (hnum-frames)x13 matrix of
features, for each utterance.

Audio processing (code)

©0 :

 ## simplifiedexf?éct from src/featbin/compute—mfcc—feats.cc’
" main(int argc, char *argv[]) {

// <snip>: parse command line arguments.

| Mfcc mfcc(mfcc opts);

SequentialTableReader<WaveHolder> reader(wav rspecifier);
BaseFloatMatrixWriter writer(feat wspecifier); // note: a typedef.
for (; !reader.Done(); reader.Next()) {
string utt = reader.Key();
const WaveData &wave data = reader.Value();
int32 channel = 0; # Let'’s assume mono data for now.
BaseFloat vtln warp = 1.0; # Gloss over VTLN (vocal tract len. norm.)
SubVector<BaseFloat> waveform(wave data.Data(), this chan);
Matrix<BaseFloat> features;
mfcc.Compute (waveform, vtln warp, &features, NULL);
writer.Write(utt, features);

— — e — —— N e

Note on Tables

@ We said Table types were templated on the type
they store, e.g. TableWriter<Matrix<float> >

@ This is a simplification: we actually template on a
"Holder” type that tells the Table code how to read
and write the object.

@ Necessary because objects dont have uniform read/
write methods. (must work for fundamental types)

Audio processing (code)

— — e — —— - e — —

|OOO

| ## 81mpllf1ed extract from src/feat/feature mfcc cc
‘ volid Mfcc::Compute(const VectorBase<BaseFloat> &wave,
Matrix<BaseFloat> *output) {
int32 rows out = NumFrames(wave.Dim(), opts .frame opts),
| cols out = opts .num ceps;
output->Resize(rows out, cols out);
Vector<BaseFloat> window; // windowed waveform.
Vector<BaseFloat> mel energies; // energies for mel bins.
for (int32 r = 0; r < rows out; r++) { // r is frame index..
ExtractWindow(wave, r, opts .frame opts,
feature window function , &window);
srfft ->Compute(window.Data(), true); // split-radix FFT
ComputePowerSpectrum(&window) ;
SubVector<BaseFloat> power spectrum(window, 0, window.Dim()/2 + 1);
mel banks .Compute(power spectrum, &mel energies);
mel energies.ApplyLog(); // take the log.
SubVector<BaseFloat> this mfcc(output->Row(r));
// this mfcc = dct matrix * mel energies [which now have log]
this mfcc.AddMatVec (1.0, dct matrix , kNoTrans, mel energies, 0.0);

End of this
lecture

